## Section 3.1

Definition of Extrema: Let $f$ be defined on an interval $I$ containing $c$.

1. $f(c)$ is the minimum of $\boldsymbol{f}$ on $\boldsymbol{I}$ when $f(c) \leq f(x)$ for all $x$ in $I$.
2. $f(c)$ is the maximum of $\boldsymbol{f}$ on $\boldsymbol{I}$ when $f(c) \geq f(x)$ for all $x$ in $I$.

The minimum and maximum of a function on an interval are the extreme values, or extrema, of the function on the interval. The minimum and maximum of a function on an interval are also called the absolute minimum and absolute maximum, or the global minimum and global maximum, on the interval. Extrema can occur at interior points or endpoints of an interval. Extrema that occur at the endpoints are called endpoint extrema.

## Definition of Relative Extrema:

1. If there is an open interval containing $c$ on which $f(c)$ is a maximum, then $f(c)$ is called a relative maximum of $f$, or you can say that $f$ has a relative maximum at $(\boldsymbol{c}, \boldsymbol{f}(\boldsymbol{c}))$.
2. If there is an open interval containing $c$ on which $f(c)$ is a minimum, then $f(c)$ is called a relative minimum of $f$, or you can say that $f$ has a relative minimum at $(\boldsymbol{c}, \boldsymbol{f}(\boldsymbol{c}))$.

Definition of Critical Number: Let $f$ be defined at $c$. If $f^{\prime}(c)=0$ or if $f$ is not differentiable at $c$, then $c$ is a critical number of $f$.

Relative Extrema Only Occur at Critical Numbers: If $f$ has a relative minimum or relative maximum at $x=c$, then $c$ is a critical number of $f$.

Guidelines for Finding Extrema on a Closed Interval: To find the extrema of a continuous function $f$ on a closed interval $[a, b]$, use these steps.

1. Find the critical numbers of $f$ in $(a, b)$.
2. Evaluate $f$ at each critical number in $(a, b)$.
3. Evaluate $f$ at each endpoint of $[a, b]$.
4. The least of these values is the minimum. The greatest is the maximum.
1) Let $f(x)=\frac{4(x-1)}{x^{2}}$. Use your graphing calculator to find the relative maximum of $f(x)$ on the interval [0,5].
a) Find $f^{\prime}(x)$ at the relative maximum.
2) Find all of the relative extrema for the function $g(x)=\cos x$ on the interval $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$.
3) Find the extrema of $f(x)=3 x^{3}+3 x^{2}-3 x+1$ on the interval $[-2,1]$. It may help to graph the function on your calculator with the window set to the given interval.
4) Find the extrema of $g(x)=-2 x-5 x^{2 / 5}$ on the interval $[-2,1]$.

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: \#3, $9,14,25,34$

